Porting Linux to a New ARM Platform

Deepak Saxena
dsaxena@plexity.net
Presented at Linux Bangalore 2004

This presentation licensed under the Creative Commons License v2.0

Introduction/Goals

* ARM is very popular and growing
— 75 percent of all 32-bit embedded CPUs [Wikipedia.org]
— Growing usage in PDA, cell, and other mobile devices
* Not much info on Linux and ARM
— Popular Kernel texts all cover core internals or drivers
— No documentation on ARM-specific requirements
* Approach:
— Go through kernel boot sequence
— Explain places where platform-level hooks needed
— Board bring-up debug

Assumptions

 Familiarity with ARM architecture

* Famihiarity with HW architecture

* Basic understanding of kernel internals

* Familiarity with kernel build and config system

Step by Step

Machine Registration
Firmware to Kernel Transition
Early kernel init

Mapping I/O devices

IRQ setup

System timer tick

Core subsystem 1nitialization
Final Board Initialization
Device drivers

First Steps

* Register your machine type
— Provides a unique numerical identifier for your machine
— Provides a configuration variable for your machine
e CONFIG MACH $MACHINE
— Provides runtime machine-check
* machine 1s xxx()
* http://www.arm.linux.org.uk/developer/machines/
* This information ends up in
— arch/arm/tools/mach-types

machine is xxx CONFIG xXXX MACH TYPE xxx number
#

ebsalll MACH_EBSAJ.ZO EBSA110 0
riscpc MACH RPC RISCPC 1
nexuspci MACH NEXUSPCI NEXUSPCI 3
ebsa’z85 MACH EBSAZ285 EBSA285 4
netwinder MACH_NETWINDER NETWINDER 5

cats MACH CATS CATS 6

SOME RIGHTS RESERVED

Firmware Requirements

* x86 requires BIOS to perform certain tasks
* ARM Linux requires same from firmware

— Detailed in Documentation/ARM/Booting
* Initialize all memory controller and system RAM
* Initialize a single serial port for early boot messages
* Disable MMU
* Disable all caches
* Quiesce all DMA capable devices
* Provide kernel parameter ATAG list
* Required registers:
-10=0
- r] = machine number
- 12 = &(ATAG list)

SOME RIGHTS RESERVED

ATAG Parameter List

* Data structure for providing machine details to kernel

B ATAG—CORE Base Address ————p

- ATAG MEM ATAG_CORE
* Memory size and location Increasing Address
* One per memory bank ATAG_MEM

- ATAG CMDLINE
* Kernel command line string ATACE NOWTE

~ ATAG NONE '

* Signifies end of parameter list

e Usually located 1n first 16KiB of RAM
— Most common 1s (@ RAM base + 0x0100
— Must not be overwritten by decompresser or initrd

* ATAG defined 1n include/asm-arm/setup.h

SOME RIBHTS RESERVED

Directory/File Structure

* arcn/arm
- mm
* Cache/TLB/page fault/DMA handling
— kernel
* core kernel setup, APIs, and syscall handling
- [ib
* low-level helper functions (mostly ASM)
— common
* code shared across various machine types
— arch-SMACHINE
* Machine-type specific code (arch-1xp4235, -pxa, -omap, etc)
— configs/SPLATFORM defconfig
e Default configuration for SPLATFORM (lubbock, ipaq, etc)
* include/asm-arm/arch-SMACHINE (include/asm/arch)

— Machine-specific headers

Early Init

* Early serial during decompression
— arch _decomp setup()
— putstr()
— include/asm-arm/arch-$MACHINE/uncompress.h

* Debug Serial Output
— addruart, rx
* Provide UART address in \rx
— senduart rd, rx
* Send character 1n \rd (@ address \rx)
— busyuart rd, rx
e Wait until UART 1s done sending
— waituart rd, rx
* Wait for Clear to Send
— Found 1n arch/arm/kernel/debug.S

CPU Detection

e Large number of ARM CPU variants in production
— Each on has different methods of managing cache, TLB
— Sometimes need to build kernel to boot on various CPUs

* Kernel contains table of CPUs it supports
— arch/arm/mm/proc-$CPUTYPE
— include/asm-arm/procinfo.h
— First thing kernel does 1s check CPUID with table of CPUs
— Table contains a mask and expected value
* [f (cpuid & cpu mask) == cpu val we are OK
* Otherwise we can't run on this CPU
- If OK, call CPU's setup function

Low Level CPU APIs

* Processor-specific functions
— Data abort, CPU init, reset, shutdown, idle
— include/asm-arm/cpu-multi32.h
 TLB handling
— Flush user and kernel TLB entries
— include/asm-arm/tibflush.h
* (Cache functions
— Flush and clean kernel and user range from cache
— Sync icache and dcache for new text
— Sync dcache with memory for DMA operations
— include/asm-arm/cacheflush.h
* User data functions
— Clear and copy user page
— include/asm-arm/page.h

Machine Detection

* If CPU 1s detected OK, check machine type

* Each platform has a machine descriptor structure:
MACHINE START (IXDP425, "Intel IXDP425 Development
Platform")
MAINTAINER ("MontaVista Software, Inc.")
BOOT MEM (PHYS OFFSET,
IXP4XX PERIPHERAL BASE PHYS,
IXP4XX PERIPHERAL BASE VIRT)
MAPIO (1xdp425 map 10)
INITIRQ (1xp4xx init irq)
.timer = &ixp4dxx timer,
BOOT PARAMS (0x0100)
INIT MACHINE (ixdp425 init)
MACHINE END

* Machine name/number from arch/arm/tool/mach-types

SOME RIGHTS RESERVED

Static I/0 Mapping

* Certain devices needed before VM 1s fully up and running
— Interrupt controllers, timer tick

* Certain devices require large VM areas
— Static mapping allows usage of IMB sections

— 10remap() uses only 4K pages
* Larger TLB footprint

* (Call mdesc->map 10()
e (Call create mapping() with static I/O mappings

ARM-Linux Memory Map

* Kernel memory 1s in upper 1GB

e Static mappings fit in VMALLOC END — Oxfeffffff
* VMALLOC END is defined by you

— include/asm-arm/arch-$MACHINE/vmalloc.h
OXFEEFEEEE
OxfeffrEee

VMALLOC_END

VMALLOC_START

PAGE_OFFSET (0xc0000000)

TASK_SIZE

0x000001ff

0x00000000

SOME RIBHTS RESERVED

ARM IRQs

* NR IRQS defined 1n include/asm-arm/arch/irgs.h
* JRQ numbering is up to developer
* First level IRQ decoding done in ASM
— include/asm/arch-$MACHINE/entry-macro.S
— get 1irqnr_and base 1rqnr, irgstat, base, tmp
* Linux IRQ number returned 1n \irqnr
* Others are for temp calculations

e TRQ “Chips”

— Chip defines a mask, unmask, and ack functions

System Timer Tick

* Initialized after IRQs

— Load timer with LATCH
* (CLOCK TICK RATE +HZ/2)/HZ)
* CLOCK TICK RATE 1s HW clock freq.

— Request timer interrupt
* Set SA INTERRUPT
— Timer ticks every (1/HZ)s
* Timer interrupt:
— Call timer tick()
— Reload timer source if needed
* gettimeoffset() function
— Returns number of usec since last timer tick

Board Level Device Initialization

* After core subsystems are 1nitialized, board init() 1s called

— Do any last needed fixups for the platform
— Add platform devices (flash, 12C, etc)
— Very board/platform specific

Device Drivers

e Live outside of arch/arm

Early Debug

* Sometimes need to debug before console 1s 1nitialized

— printascii() and friends
- JTAG (Abatron BDI2000)

Working With the Community

* Plan on getting things upstream
— Decreases your workload

* Release early/release often
— Work with the community to fix 1ssues

* Do not make core changes or create new APIs in the dark
— Wastes time fo everyone involved

e ARM Linux Website

Questions?

Backup Material

SOME RIGHTS RESERVED

ARM PCI Support

