
Porting Linux to a New ARM Platform

Deepak Saxena
dsaxena@plexity.net

Presented at Linux Bangalore 2004

This presentation licensed under the Creative Commons License v2.0

Introduction/Goals
● ARM is very popular and growing

– 75 percent of all 32-bit embedded CPUs [Wikipedia.org]
– Growing usage in PDA, cell, and other mobile devices

● Not much info on Linux and ARM
– Popular Kernel texts all cover core internals or drivers
– No documentation on ARM-specific requirements

● Approach:
– Go through kernel boot sequence
– Explain places where platform-level hooks needed
– Board bring-up debug

Assumptions
● Familiarity with ARM architecture
● Familiarity with HW architecture
● Basic understanding of kernel internals
● Familiarity with kernel build and config system

Step by Step
● Machine Registration
● Firmware to Kernel Transition
● Early kernel init
● Mapping I/O devices
● IRQ setup
● System timer tick
● Core subsystem initialization
● Final Board Initialization
● Device drivers

First Steps
● Register your machine type

– Provides a unique numerical identifier for your machine
– Provides a configuration variable for your machine

● CONFIG_MACH_$MACHINE
– Provides runtime machine-check

● machine_is_xxx()
● http://www.arm.linux.org.uk/developer/machines/
● This information ends up in

– arch/arm/tools/mach-types

machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx number
#
ebsa110 MACH_EBSA110 EBSA110 0
riscpc MACH_RPC RISCPC 1
nexuspci MACH_NEXUSPCI NEXUSPCI 3
ebsa285 MACH_EBSA285 EBSA285 4
netwinder MACH_NETWINDER NETWINDER 5
cats MACH_CATS CATS 6

Firmware Requirements
● x86 requires BIOS to perform certain tasks
● ARM Linux requires same from firmware

– Detailed in Documentation/ARM/Booting
● Initialize all memory controller and system RAM
● Initialize a single serial port for early boot messages
● Disable MMU
● Disable all caches
● Quiesce all DMA capable devices
● Provide kernel parameter ATAG list
● Required registers:

– r0 = 0
– r1 = machine number
– r2 = &(ATAG list)

ATAG Parameter List
● Data structure for providing machine details to kernel

– ATAG_CORE
– ATAG_MEM

● Memory size and location
● One per memory bank

– ATAG_CMDLINE
● Kernel command line string

– ATAG_NONE
● Signifies end of parameter list

● Usually located in first 16KiB of RAM
– Most common is @ RAM base + 0x0100
– Must not be overwritten by decompresser or initrd

● ATAG defined in include/asm-arm/setup.h

ATAG_CORE

ATAG_NONE

ATAG_MEM

Base Address

Increasing Address

Directory/File Structure
● arch/arm/

– mm
● Cache/TLB/page fault/DMA handling

– kernel
● core kernel setup, APIs, and syscall handling

– lib
● low-level helper functions (mostly ASM)

– common
● code shared across various machine types

– arch-$MACHINE
● Machine-type specific code (arch-ixp425, -pxa, -omap, etc)

– configs/$PLATFORM_defconfig
● Default configuration for $PLATFORM (lubbock, ipaq, etc)

● include/asm-arm/arch-$MACHINE (include/asm/arch)
– Machine-specific headers

Early Init
● Early serial during decompression

– arch_decomp_setup()
– putstr()
– include/asm-arm/arch-$MACHINE/uncompress.h

● Debug Serial Output
– addruart, rx

● Provide UART address in \rx
– senduart rd, rx

● Send character in \rd (@ address \rx)
– busyuart rd, rx

● Wait until UART is done sending
– waituart rd, rx

● Wait for Clear to Send
– Found in arch/arm/kernel/debug.S

CPU Detection
● Large number of ARM CPU variants in production

– Each on has different methods of managing cache, TLB
– Sometimes need to build kernel to boot on various CPUs

● Kernel contains table of CPUs it supports
– arch/arm/mm/proc-$CPUTYPE
– include/asm-arm/procinfo.h
– First thing kernel does is check CPUID with table of CPUs
– Table contains a mask and expected value

● If (cpuid & cpu_mask) == cpu_val we are OK
● Otherwise we can't run on this CPU

– If OK, call CPU's _setup function

Low Level CPU APIs
● Processor-specific functions

– Data abort, CPU init, reset, shutdown, idle
– include/asm-arm/cpu-multi32.h

● TLB handling
– Flush user and kernel TLB entries
– include/asm-arm/tlbflush.h

● Cache functions
– Flush and clean kernel and user range from cache
– Sync icache and dcache for new text
– Sync dcache with memory for DMA operations
– include/asm-arm/cacheflush.h

● User data functions
– Clear and copy user page
– include/asm-arm/page.h

Machine Detection
● If CPU is detected OK, check machine type
● Each platform has a machine descriptor structure:

MACHINE_START(IXDP425, "Intel IXDP425 Development
Platform")

 MAINTAINER("MontaVista Software, Inc.")
 BOOT_MEM(PHYS_OFFSET,
IXP4XX_PERIPHERAL_BASE_PHYS,

 IXP4XX_PERIPHERAL_BASE_VIRT)
 MAPIO(ixdp425_map_io)
 INITIRQ(ixp4xx_init_irq)
 .timer = &ixp4xx_timer,
 BOOT_PARAMS(0x0100)
 INIT_MACHINE(ixdp425_init)
MACHINE_END

● Machine name/number from arch/arm/tool/mach-types

Static I/O Mapping
● Certain devices needed before VM is fully up and running

– Interrupt controllers, timer tick
● Certain devices require large VM areas

– Static mapping allows usage of 1MB sections
– ioremap() uses only 4K pages

● Larger TLB footprint
● Call mdesc->map_io()
● Call create_mapping() with static I/O mappings

ARM-Linux Memory Map
● Kernel memory is in upper 1GB
● Static mappings fit in VMALLOC_END – 0xfeffffff
● VMALLOC_END is defined by you

– include/asm-arm/arch-$MACHINE/vmalloc.h

NULL/Vector Trap 0x00000000

0x00000fff

TASK_SIZE
User Mappings

Kernel Modules

Direct Mapped RAM
PAGE_OFFSET (0xc0000000)

vmalloc() and
 ioremap()

VMALLOC_START

VMALLOC_END
Static I/O

0xfeffffff

Reserved for vectors,
DMA buffers, etc

0xffffffff

ARM IRQs
● NR_IRQS defined in include/asm-arm/arch/irqs.h
● IRQ numbering is up to developer
● First level IRQ decoding done in ASM

– include/asm/arch-$MACHINE/entry-macro.S
– get_irqnr_and_base irqnr, irqstat, base, tmp

● Linux IRQ number returned in \irqnr
● Others are for temp calculations

● IRQ “Chips”
– Chip defines a mask, unmask, and ack functions

System Timer Tick
● Initialized after IRQs

– Load timer with LATCH
● ((CLOCK_TICK_RATE + HZ/2) / HZ)
● CLOCK_TICK_RATE is HW clock freq.

– Request timer interrupt
● Set SA_INTERRUPT

– Timer ticks every (1/HZ)s
● Timer interrupt:

– Call timer_tick()
– Reload timer source if needed

● gettimeoffset() function
– Returns number of usec since last timer tick

Board Level Device Initialization
● After core subsystems are initialized, board_init() is called

– Do any last needed fixups for the platform
– Add platform devices (flash, I2C, etc)
– Very board/platform specific

Device Drivers
● Live outside of arch/arm

Early Debug
● Sometimes need to debug before console is initialized

– printascii() and friends
– JTAG (Abatron BDI2000)

Working With the Community
● Plan on getting things upstream

– Decreases your workload
● Release early/release often

– Work with the community to fix issues
● Do not make core changes or create new APIs in the dark

– Wastes time fo everyone involved
● ARM Linux Website

– http://www.arm.linux.org.uk

Questions?

Backup Material

ARM PCI Support

